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1-Titanacyclopent-3-yne and 1-hafnacyclopent-3-yne com-
plexes were synthesized, and one of the titanium compounds
was structurally characterized. Its molecular structure was simi-
lar to the zirconium analogue, although shorter Ti–C bonds may
emphasize the ring strain of the five-membered cyclic alkyne
structure.

Small cyclic alkynes are usually unstable and difficult to iso-
late.2 We recently reported the synthesis and structure of 1-zirco-
nacyclopent-3-yne complexes that can be regarded as the first
isolable five-membered cyclic alkynes (Eq 1).3 We also reported
a simple and versatile preparative method for zirconacyclopen-
tyne, that is derived from Cp2ZrCl2 and 1,4-dichloro-2-butyne.4

Five-membered metallacyclocumulenes reported by Rosenthal
and co-workers have similar structure and reactivity to metalla-
cyclopentynes.5 They have prepared a variety of zirconacyclocu-
mulenes as well as titanacyclocumulenes and extensively stud-
ied their reactivity, although, to the best of our knowledge, a haf-
nium analogue has not been reported. They demonstrated that
these zirconium and titanium complexes showed a few slight dif-
ferences in their molecular structures.6
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For metallacyclopentyne complexes, to compare the struc-
ture of zirconium and titanium complexes is important in under-
standing their property. Thus we subsequently aimed to synthe-
size metallacyclopentynes of other group 4 metals. During the
course of our study, very recently Rosenthal and co-workers
have reported preparation of a 1-titanacyclopent-3-yne com-
pound 2 using modification of our method, although the molecu-
lar structure of 2 was not shown (Eq 2).7 We wish to report here
our results, the synthesis and structure of 1-titanacyclopent-3-
yne and 1-hafnacyclopent-3-yne complexes.1
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We at first used (Z)-1,4-bis(trimethylsilyl)-1,2,3-butatriene
(3)8 for preparation of 1-titanacyclopent-3-yne (Eq 3). Titano-
cene dichloride was treated with two equiv of n-BuMgCl, and
then reacted with 3.9 NMR observation of the reaction mixture
indicated the formation of 1-tianacyclopent-3-yne 4 as a mixture
of cis- and trans-isomers.
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Cyclopentadienyl (Cp) rings appeared at 4.86 and 5.03 ppm
for the cis-isomer and 4.94 ppm for the trans-isomer. The me-
thine protons were observed at 2.49 and 2.28 ppm for cis- and
trans-isomers, respectively. In 13CNMR spectrum, signals as-
signable to quaternary alkynyl carbons in cis- and trans-isomers
were observed at 107.96 and 108.80 ppm, respectively. These
spectra are similar to those of the corresponding zirconium ana-
logue,3 supporting the formation of 4. The isomerization from
the cis-isomer to the trans reached to an equilibrium after 1 h
at rt. Interestingly, it is faster than observed for the zirconium an-
alogue 1a, where it required overnight stirring at rt.
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The hafnocene derivative 5 could be also prepared similarly
using Mg/HgCl2 as reducing agents (Eq 4).10 The NMR obser-
vation showed similar signals to the Zr complex (vide infra). The
cis/trans ratio was 50/50 after 1 h at rt, and the isomerization
from cis- to trans-5 was significantly slower than observed for
the Zr complex 1a. It required heating at 50 �C overnight (cis/
trans = 38/62). It is noteworthy that this is the first example
of 1-hafnacyclopent-3-yne compound. However, attempts to iso-
late these Ti and Hf complexes in a pure form have been unsuc-
cessful so far.11

Then we applied the method starting from 1,4-dichloro-2-
butyne to titanium. The procedure was similar to the preparation
of the zirconium derivative 1b (Eq 5).12
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Titanacyclopent-3-yne compound 2 was formed in 60%
yield by 1HNMR. Recrystallization from hexane solution gave
dark brown crystals of 2 despite low yield (9%). Spectroscopic
data were identical to the reported results.7a The molecular struc-
ture of 2 was determined by X-ray diffraction study (Figure 1).
This is the first example of structurally characterized 1-titanacy-
clopent-3-yne. Its structure is similar to that of the zirconium an-
alogue 1b (Figure 2).13 Four carbons of butatriene and Ti metal
are coplanar, and the butatriene moiety is bent to form a strained
five-membered metallacycle. The C1–C2 and C2–C2* bond
lengths are in a similar range to those of 1b, as well as the
C1–C2–C2* angle. On the other hand, the Ti–C1 and Ti–C2 dis-
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tances are significantly shorter than the Zr–C1/C4 and Zr–C2/
C3 distances of 1b. Although shorter Ti–C bonds compared to
the corresponding Zr–C bonds are usually observed,14 these re-
sults imply a more strained structure of 2 than that of 1b. This
led us to examine the NMR data of the metallacyclpentynes
complexes.

Selected data of chemical shifts for Ti, Zr, and Hf complexes
are summarized in Table 1. In both 1H and 13CNMR, the signals
due to Me3Si and Cp groups appeared in similar regions regard-
less of the metals, while those assigned to butatriene appeared
downfield in the order Ti > Zr > Hf. Particularly 13C signals
for �-carbons (CH or CH2) in the Ti complexes at 51–53 ppm
were much downfield compared to those in the Zr and Hf
complexes.
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Figure 1. Molecular structure of 2. Drawn with 50% probability.
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Figure 2. Selected bond distances ( �A) and angles (deg) of 1b.

Table 1. Chemical shifts (ppm) in 1H and 13CNMR for 1-met-
alalcyclopent-3-yne complexesa

1H/13C Ti Zr Hf

cis-4 cis-1a cis-5
1H CH 2.49 2.19 2.02
13C CH 53.44 38.91 37.45

C�C 107.96 102.92 98.27

trans-4 trans-1a trans-5
1H CH 2.28 2.15 1.95
13C CH 53.66 39.48 37.99

C�C 108.80 103.59 98.80

2 1b
1H CH2 3.03 2.73
13C CH2 51.18 38.64

C�C 106.88 102.45
a in C6D6.
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